Complexity of algebraic computation

Homework assignment #7

1. In the Euclidean algorithm from Lecture 4, for the case of integers, prove that $f_k \geq 2f_{k+2}$.

2. Explain why step 2 on page 15 of lecture 7 is required.

3. **Definition** An nth root of unity ω is *principal* if for all $k = 1, 2, \ldots, n - 1$, \[
\sum_{i=0}^{n-1} \omega^{ki} = 0.
\]

 (a) Let ω be an nth principal root of unity. Prove that if n is not a zero divisor, then ω is also primitive.

 (b) Is the converse of (a) true? Hint: look at the domains with zero divisors.

 (c) Let n be a power of 2 and let $\omega^{n/2} = -1$. Show that ω is an nth a principal root of unity.