The De-Kupur-Saha-Saptharishi algorithm for integer multiplication
The function $\log^{(i)}$ is defined recursively as follows.

- $\log^{(0)} n = n$, and
- $\log^{(i+1)} n = \log_2 \left(\log^{(i)} n \right)$.

$$\log^* n = \min \{ i \geq 0 : \log^{(i)} n \leq 1 \}$$

The Fürer and the De-Kupur-Saha-Saptharishi algorithms compute the product of two N-bit integers in $N \log N \ 2^{O(\log^* N)}$ bit operations.
Encoding integers by k-variate polynomials
We break an N-bit integer a into M^k blocks, $\frac{N}{M^k}$ bits in each, which corresponds to representing a in base $q = 2^{\frac{N}{M^k}}$.

Let

$$a = a_{M^k-1}q^{M^k-1} + a_{M^k-2}q^{M^k-2} + a_0,$$

where $a_i < q$, $i = 0, 1, \ldots, M^k - 1$.
Next, we convert a into a polynomial.

For this, we express the index i of a_i in base M:

$$i = i_k M^{k-1} + i_{k-1} M^{k-2} + \cdots + i_1$$

(note the indices!), where $i_j < M$, $j = 1, 2, \ldots, k$, and encode each term $a_i q^i$ as the monomial

$$a_i X_1^{i_1} X_2^{i_2} \cdots X_k^{i_k}.$$

That is, a is converted into the polynomial

$$\sum_{i=0}^{M^k-1} a_i X_1^{i_1} X_2^{i_2} \cdots X_k^{i_k}.$$

The parameters M and k (the latter being a constant) will be chosen so that

$$M^k = O \left(\frac{N}{\log^2 N} \right).$$
Finally, we break each a_i into $\frac{m}{2}$ equal sized blocks, $u = \frac{2N}{mM^k}$ bits in each and encode a_i as a polynomial in λ of degree $\frac{m}{2}$. That is, if

$$a_i = \sum_{j=0}^{\frac{m}{2}-1} a_{i,j}2^uj,$$

then a_i is encoded by the polynomial

$$\sum_{j=0}^{\frac{m}{2}-1} a_{i,j}\lambda^j.$$

Summing up, a is converted into a k-variate polynomial $a(X_1, X_2, \ldots, X_k)$ over the ring $\mathbb{Z}(\lambda)/(\lambda^m + 1)$.

The parameter m will be chosen so that

$$m = O(\log N).$$
Given N-bit integers a and b, we encode them as polynomials

$$a(X_1, X_2, \ldots, X_k) \quad \text{and} \quad b(X_1, X_2, \ldots, X_k)$$

and compute the product polynomial. The product ab can be recovered by substituting $X_s = q^{M^{s-1}}$, for $s = 1, 2, \ldots, k$, and $\lambda = 2^u$ in the polynomial $a(X_1, X_2, \ldots, X_k)b(X_1, X_2, \ldots, X_k)$.

The coefficients in the product polynomial could be as large as $mM^{k}\lambda 2^u$ (why?).

Thus, it is sufficient to do arithmetic modulo p^c, where p is prime and $p^c > mM^k\lambda 2^u$.\(^1\)

\(^1\)The choice of the prime p ensures that c is, in fact, a constant.
Lemma Multiplication of two N-bit integers reduces to multiplication of two k-variate polynomials, with degree in each variable bounded by M, over the ring

$$\mathcal{R} = \mathbb{Z}(\lambda)/(p^c, \lambda^m + 1)$$

for a prime p satisfying $p^c > mM^k 2^{2u}$, where $u = \frac{2N}{mM^k}$.

Furthermore, the reduction can be performed in $O(N)$ time.
Choosing the prime p
We shall choose the prime p and c such that the ring $\mathbb{Z}/p^c\mathbb{Z}$ has a principal $2M$th root of unity needed for polynomial multiplication using the discrete Fourier transform.

As we have already seen (where?), in $\mathbb{Z}/p^c\mathbb{Z}$, a $2M$th root of unity is principal if and only if $2M$ divides $p - 1$.

Therefore, we must choose the prime p from the arithmetic progression

$$\{1 + i \cdot 2M : i + 1, 2, \ldots \}.$$

Theorem There exist ℓ and L such that for any pair of coprime integers d and n, the least prime p such that $p \equiv d \mod n$ is less than ℓn^L.\(^2\)

\(^2\)In fact, $L \leq 5$.
Lemma If \(k > L + 1 \), then \(M^L = O(N^{\frac{L}{L+1}}) \).

Proof Since \(M^k < N \) (why?), we have

\[
M^L < N^{\frac{L}{k}} < N^{\frac{L}{L+1}}.
\]

\[\square\]

Corollary The least prime \(p \) such that \(p \equiv 1 \mod 2M \) can be found in \(o(N) \) time.

Proof We have to test for primality the first \(O\left(N^{\frac{L}{L+1}}\right) \) integers.

Since each of them is of length \(O(\log N) \) and primality can be tested in polynomial time, the total computation time is

\[
O\left(N^{\frac{L}{L+1}}\right) \text{poly}(\log N) = o(N).
\]

\[\square\]
Finding the root of unity
For what follows, we need a principal $2M$th root of unity $\rho(\lambda)$ in \mathcal{R} such that $(\rho(\lambda))^{M/m} = \lambda$ (why m divides M?).

To obtain such a root, we start with computing a $2M$th root of unity ω_1 in \mathbb{Z}_p.

For this we compute a generator ζ of \mathbb{Z}_p^*, by successively testing $2, 3, \ldots, p-1$.

Each test can be performed in $\text{poly}(\log p)$ bit operations (why?).

Thus, ζ can be found in $o(N)$ bit operations (why?)

We put

$$\omega_1 = \zeta^{(p-1)/2M}$$

and compute a principal $2M$th root of unity ω_c in \mathbb{Z}_{p^c} in additional $o(N)$ bit operations (how?).
Let $\gamma = \omega_c^{M/m}$. Then, γ is a principal $2m$th root of unity (why?), implying

$$\lambda^m + 1 = \prod_{i=0}^{m-1} \lambda - \gamma^{2i+1}$$

(why?). Let

$$\rho(\lambda) = \sum_{i=0}^{m-1} \omega_c^{2i+1} \prod_{j=0}^{m-1} \frac{\lambda - \gamma^{2j+1}}{\gamma^{2i+1} - \gamma^{2j+1}} .$$

(Why $\gamma^{2i+1} - \gamma^{2j+1} \not\equiv 0 \mod p$?)
\[\rho(\lambda) = \sum_{i=0}^{m-1} \omega_c^{2i+1} \prod_{\substack{j=0 \atop j \neq i}}^{m-1} \frac{\lambda - \gamma^{2j+1}}{\gamma^{2i+1} - \gamma^{2j+1}}\]

Then, \(\rho(\gamma^{2i+1}) = \omega_c^{2i+1} \) \(i = 0, 1, \ldots, m - 1\), (why?), implying

\[
\left(\rho(\gamma^{2i+1})\right)^M = \left(\omega_c^{2i+1}\right)^M = \left(\omega_c^M\right)^{2i+1} = (-1)^{2i+1} = -1.
\]

Therefore, \(\lambda - \gamma^{2i+1}\) divides \((\rho(\lambda))^M + 1\) (why?) and it follows that \(\lambda^m + 1\) divides \((\rho(\lambda))^M + 1\) as well (why?). That is,

\[
(\rho(\lambda))^M + 1 \equiv 0 \mod \lambda^m + 1.
\]
\[\rho \left(\gamma^{2i+1} \right) = \omega_c^{2i+1} \quad i = 0, 1, \ldots, m - 1 \]

In addition,

\[\left(\rho \left(\gamma^{2i+1} \right) \right)^{M/m} = \left(\omega_c^{2i+1} \right)^{M/m} = \gamma^{2i+1} \]

(why?).

Therefore,

\[\left(\rho(\lambda) \right)^{M/m} = \lambda \mod \lambda - \gamma^{2i+1}, \quad i = 0, 1, \ldots, m - 1 \]

(why?), implying

\[\left(\rho(\lambda) \right)^{M/m} = \lambda \mod \lambda^m + 1 \]

(how?).

Note \(\rho(\lambda) \) can be computed in \(\text{poly}(\log N) \) bit operations (why?).
Fourier transform and multiplication of multivariate polynomials
General

Let S be a ring containing a $2M$th principal root of unity ρ and let $P(x) \in S[x]$ be a polynomial of degree less than $2M$. We are going to evaluate $P(x)$ at $1, \rho, \ldots, \rho^{2M-1}$ in two stages as follows.

- At Stage 1, for $\gamma = \rho^{M/m}$, we compute the polynomials
 \begin{align*}
P_0(x) &= \text{rem}(P(x), x^{M/m} - 1) \\
P_1(x) &= \text{rem}(P(x), x^{M/m} - \gamma) \\
&\quad \vdots \\
P_{2m-1}(x) &= \text{rem}(P(x), x^{M/m} - \gamma^{2m-1}).
 \end{align*}

and

- at Stage 2, we evaluate each polynomial $P_i(x), i = 0, 1, \ldots, 2m-1$, at the roots of $x^{M/m} - \gamma^i$ (how?).

This will give us with the Fourier transform of the vector of the coefficients of $P(x)$.
For Stage 1, we have

\[
P(x) = p_0 + \cdots + p_j x^j + \cdots + p_{M-1} x^{M-1}
\]

\[
p_{\frac{M}{m}} x^{\frac{M}{m}} + \cdots + p_{\frac{M}{m}+j} x^{\frac{M}{m}+j} + \cdots + p_{2\frac{M}{m}-1} x^{2\frac{M}{m}-1}
\]

\[\vdots\]

\[
p_{\ell \frac{M}{m}} x^{\ell \frac{M}{m}} + \cdots + p_{\ell \frac{M}{m}+j} x^{\ell \frac{M}{m}+j} + \cdots + p_{(\ell+1)\frac{M}{m}-1} x^{(\ell+1)\frac{M}{m}-1}
\]

\[\vdots\]

\[
p_{2M-\frac{M}{m}} x^{2M-\frac{M}{m}} + \cdots + p_{2M-\frac{M}{m}+j} x^{2M-\frac{M}{m}+j} + \cdots + p_{2M-1} x^{2M-1}
\]

\[
= \sum_{j=0}^{\frac{M}{m}-1} x^j \sum_{\ell=0}^{2m-1} p_{\ell \frac{M}{m}+j} x^{\ell \frac{M}{m}}
\]
\[P(x) = \sum_{j=0}^{\frac{M}{m}-1} x^j \sum_{\ell=0}^{2m-1} p_{\ell \frac{M}{m} + j} x^{\ell \frac{M}{m}} \]

Thus,

\[P(x) \equiv \sum_{j=0}^{\frac{M}{m}-1} x^j \sum_{\ell=0}^{2m-1} p_{\ell \frac{M}{m} + j} (\gamma^k)^\ell \mod x^{M/m} - \gamma^k \]

(why?).

For a fixed \(j \), the sums \(\sum_{\ell=0}^{2m-1} p_{\ell \frac{M}{m} + j} (\gamma^k)^\ell, k = 0, 1, \ldots, 2m - 1 \), are just \(2m \)-point Fourier transforms of \((p_j, p_{\frac{M}{m} + j}, \ldots, p_{(2m-1)\frac{M}{m} + j}) \) “at \(\gamma \).”

Thus, the whole computation at Stage 1, can be performed by computing \(M/m \) \(2m \)-point Fourier transforms.

In Stage 2, we have \(2m \) Fourier transforms of dimension \(M/m \) “at \(\rho^m \)” and \(2M \) multiplications in \(\mathcal{S} \) by powers of \(\rho \) (which transforms and which multiplications?).
In what follows, \(S \) will “recursively” be \(S_i = \mathcal{R}[X_1, X_2, \ldots, X_{i-1}], \ i = 1, 2, \ldots, k \), \(x \) will be \(X_i \), respectively, and \(\rho \) will be the principal \(2M \)th \(\rho(\lambda) \) root of unity we have computed before (how?). In particular, \(\rho^{M/m} = \lambda \).

We shall multiply polynomials \(a(X_i) \) and \(b(X_i) \), \(\deg a(X_i), \deg b(X_i) < M \), over \(S_i \). Let \(F(M, i) \) denote the bit complexity of this multiplication.

Multiplication of \(a(X_i) \) and \(b(X_i) \) consists of three \(2M \)-point Fourier transforms over \(S_i \) and \(2M \) pointwise multiplications in \(S_i \).

Let \(D(n, i) \) denote the bit complexity of an \(n \)-point Fourier transform over \(S_i \). It consists of

- the complexity of computing the \(2m \) residues at Stage 1;

- the complexity of multiplication of the residue coefficients by the appropriate powers of \(\rho \) in Stage 2; and

- computing \(2m \) Fourier transforms of dimension \(M/m \), also in Stage 2.
Bit complexity of Stage 1
Computing a $2m$-point Fourier transform requires $2m \log_2(2m)$ additions over any S_i and $m \log_2(2m)$ multiplications of the coefficients of polynomials in S_i by powers of λ.

Since $R = \mathbb{Z}[\lambda]/(p^c, \lambda^m + 1)$, multiplication by a power of λ of an element in R is a cyclic shift with subtractions, which takes $O(m \log p)$ bit operations (why?).

An element in S_i is just a polynomial over R in variables $X_1, X_2, \ldots, X_{i-1}$, with degree in each variable less than M. Hence, multiplication by a power of λ of an element of S_i can be done in $N_{S_i} = O(M^{i-1}m \log p)$ bit operations (why?).

Therefore, a total of $m \log_2(2m)$ multiplications takes $O((m \log m)N_{S_i})$ bit operations.

It is easy to see that a similar argument (which one?) shows that $2m \log_2(2m)$ additions in S_i also require the same order of time.

Finally, since there are M/m many $2m$-point Fourier transforms, the total time spent in Stage 1 is $O((M \log m)N_{S_i})$ bit operations (why?).
Bit complexity of Stage 2 (what is stage 2?) and the total complexity of the Fourier transform
Suppose that two arbitrary elements in \mathcal{R} can be multiplied using $M_\mathcal{R}$ bit operations.

Multiplication in S_i by a power of ρ amounts to $c_{S_i} = M^{i-1}$ multiplications in \mathcal{R}.

Since there are $2M$ such multiplications, the total time is $O(Mc_{S_i}M_\mathcal{R})$.

By the definition of D, the bit complexity of the Fourier transforms at Stage 2 is $2mD(M/m, i)$.

Note

$$(\rho^m)^{(M/m)/m} = \rho^{M/m} = \lambda.$$

Summing up,

$$D(M, i) = O(M \log m \cdot N_{S_i} + M \cdot c_{S_i} \cdot M_\mathcal{R}) + 2mD(M/m, i)$$

$$= O(M \log m \cdot N_{S_i} + Mc_{S_i}M_\mathcal{R}) \frac{\log M}{\log m}$$

$$= O \left(M^i \log M \cdot m \cdot \log p + \frac{M^i \log M}{\log m} M_\mathcal{R} \right).$$

Note that in $D(M/m, i)$ we have to replace M in N_{S_i} and in c_{S_i} with M/m.

25
Pointwise multiplications and
total polynomial multiplication time
Finally, the multiplication algorithm performs $2M$ pointwise multiplications in S (what are these multiplications?).

Since elements of S_i are $(i-1)$-variate polynomials over \mathcal{R}, with degree in every variable less than M, total time taken for pointwise multiplications is $2MF(M, i - 1)$ bit operations.

Therefore,

$$F(M, i) = O \left(M^i \log M \cdot m \log p + \frac{M^i \log M}{\log m} M_\mathcal{R} \right) + 2MF(M, i - 1)$$

$$= O \left(M^i \log M \cdot m \log p + \frac{M^i \log M}{\log m} M_\mathcal{R} \right),$$

because $i \leq k$ and k is a constant.

Thus,

$$F(M, k) = O \left(M^k \log M \cdot m \log p + \frac{M^k \log M}{\log m} M_\mathcal{R} \right).$$
Choosing parameters
\[F(M, k) = O \left(M^k \log M \cdot m \log p + \frac{M^k \log M}{\log m} M_R \right) \]

- \(k > L + 1 \) (what is \(L \));

- \(M^k = O(N/\log^2 N) \) and \(m = O(\log N) \) (therefore, \(M^L = O(N^\varepsilon) \) for some \(\varepsilon < 1 \). Give an upper bound on \(\varepsilon \));

- \(c > 5(k + 1) \); and

- the length of \(p \) is \(O(\log N) \), but \(p^c > 2M^k m 2^{2u} \), where \(u = \frac{2N}{M^k m} \).

Let \(T(n) \) denote the bit complexity of multiplication of \(n \)-bit integers.

Proposition \(M_R = T(O(\log^2 N)) \).
Proof Elements of \mathcal{R} can be viewed as polynomials in λ of degree m (or less) over $\mathbb{Z}/p^c\mathbb{Z}$. We encode such a polynomial $f(\lambda) = \sum_{i=0}^{m-1} f_i \lambda^i$, $f_i < p^c$, $i = 0, 1, \ldots, m - 1$, by an integer $f(2^d) = \sum_{i=0}^{m-1} f_i 2^{di}$, where $2^d > mp^{2c}$.

Then the coefficients of the product $f(\lambda)g(\lambda)$ can be recovered from the integer product $f(2^d)g(2^d)$ (how? Where have we seen a similar construction?) and the constraint $2^d > mp^{2c}$ implies that we can take $d = O(\log N)$ (why?).

Thus, the length of the encoding is $O(\log^2 N)$ (why?), implying the the product of the encodings can be computed in $T(O(\log^2 N))$ bit operations.

Reducing modulo $\lambda^m + 1$ (why do we need to reduce?) can be performed in $O(md) = O(\log^2 N)$ bit operations (why?), and dividing by p^c, which has $O(\log N)$ bits, can be performed in $T(O(\log N))$ bit operations (why? Why do we have to divide by p^c?).
Summing up,

\[M_R = T\left(O\left(\log^2 N\right)\right) + O(\log N \cdot T(O(\log N))) = T\left(O\left(\log^2 N\right)\right) \]

(why?)

Corollary

\[T(N) = F(M, k) = O\left(M^k \log M \cdot m \log p + \frac{M^k \log M}{\log m} M_R \right) \]

\[= O\left(N \log N + \frac{N}{\log N \log \log N} T\left(O\left(\log^2 N\right)\right)\right). \]

After solving the recurrence from the corollary **at home**, we obtain the desired upper bound.

Theorem \[T(N) = N \log N 2^{O(\log^* N)} \] (where is the \(O\)?)