Back to multiplication of polynomials: an optimal algorithm
Alternatively, the coefficients of the product of two polynomials of degree $n - 1$ can be computed as follows.

1. Fix any $2n - 1$ pairwise distinct field elements (points) $t_0, t_1, \ldots, t_{2n-2}$ and evaluate $x(\lambda)$ and $y(\lambda)$ at these points.

2. Compute $z(t_k) = x(t_k)y(t_k)$, $k = 0, 2, \ldots, 2n - 2$.

3. Interpolate the coefficients of $z(\lambda)$.

This algorithm requires only $2n - 1$ multiplications.
Let \(\bar{x} = (x_0, x_1, \ldots, x_{n-1}, 0, 0, \ldots, 0) \) and \(\bar{y} = (y_0, y_1, \ldots, y_{n-1}, 0, 0, \ldots, 0) \), and let

\[
W = W(t_0, t_1, \ldots, t_{2n-2}) = \begin{pmatrix}
1 & t_0 & \cdots & t_{2n-2} \\
1 & t_1 & \cdots & t_{2n-2} \\
\vdots & \vdots & & \vdots \\
1 & t_{2n-2} & \cdots & t_{2n-2}
\end{pmatrix}
\]

Then

\[
W\bar{x}^T = (x(t_0), x(t_1), \ldots, x(t_{2n-2}))^T,
\]

\[
W\bar{y}^T = (y(t_0), y(t_1), \ldots, y(t_{2n-2}))^T,
\]

and

\[
Wz^T = (z(t_0), z(t_1), \ldots, z(t_{2n-2}))^T,
\]

implying

\[
z^T = (z_0, z_1, \ldots, z_{2n-2})^T = W^{-1}((W\bar{x}^T) \cdot (W\bar{y}^T)).
\]
\[x(\lambda) = \sum_{i=0}^{n-1} x_i \lambda^i = \lambda^{n-1} \sum_{i=0}^{n-1} x_{n-1-i} \lambda^{-i} = \lambda^{n-1} \leftarrow x(\lambda^{-1}) \]

\[y(\lambda) = \sum_{j=0}^{n-1} y_j \lambda^j = \lambda^{n-1} \sum_{j=0}^{n-1} y_{n-1-j} \lambda^{-j} = \lambda^{n-1} \leftarrow y(\lambda^{-1}) \]

\[z(\lambda) = \lambda^{2n-2} \sum_{k=0}^{2n-2} z_k \lambda^{k-2n+2} = \lambda^{2n-2} \sum_{k=0}^{2n-2} z_{2n-2-k} \lambda^{-k} = \lambda^{2n-2} \leftarrow z(\lambda^{-1}) \]

where \(z_k = \sum_{i+j=k} x_i y_j, \) \(k = 0, 1, \ldots, 2n - 2. \)
Substituting β for λ^{-1}, we see that the set of coefficients of $x(\lambda)y(\lambda)$ is equal to set of coefficients of $\tilde{x}(\beta)\tilde{y}(\beta)$, where

$$
\tilde{x}(\beta) = \sum_{i=0}^{n-1} x_{n-1-i}\beta^i \quad \tilde{y}(\beta) = \sum_{j=0}^{n-1} y_{n-1-j}\beta^j
$$

Thus, evaluation of $x(\lambda)$ and $y(\lambda)$ at a point t corresponds to evaluation of $\tilde{x}(\lambda)$ and $\tilde{y}(\lambda)$ at t^{-1}, and vice versa.

In particular, evaluation of $x(\lambda)$ and $y(\lambda)$ at 0 corresponds to evaluation of $\tilde{x}(\lambda)$ and $\tilde{y}(\lambda)$ at ∞, and vice versa: we just define $x(\infty) = x_{n-1}$, $y(\infty) = y_{n-1}$, and $z(\infty) = z_{2n-2}$.

That is, the row of W corresponding to ∞ is $(0, 0, \ldots, 0, 1)$.
Fourier transform and convolution
\[\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} \, dx \]

\[f(x) = \int_{-\infty}^{\infty} \hat{f}(\omega) e^{2\pi i x \omega} \, d\omega \]

\[h(x) = (f \ast g)(x) = \int_{-\infty}^{\infty} f(y) g(x - y) \, dy \]

\[\hat{h}(\omega) = \hat{f}(\omega) \hat{g}(\omega) \]
Let \(f, g, h : \mathbb{Z} \to \mathbb{R} \) be such that

1. \(f(x) = g(x) = 0 \) for \(x < 0 \) or \(x > n - 1 \), and
2. \(h(x) = 0 \) for \(x < 0 \) or \(x > 2n - 2 \),

and let

\[
[f](\lambda) = \sum_{x=0}^{n-1} f(x)\lambda^x \quad [g](\lambda) = \sum_{x=0}^{n-1} g(x)\lambda^x \quad [h](\lambda) = \sum_{x=0}^{2n-2} h(x)\lambda^x
\]

\[
[h](\lambda) = [f](\lambda)[g](\lambda) = \sum_{x=0}^{2n-2} h(x)\lambda^x = \sum_{x=0}^{2n-2} \sum_{y=0}^{2n-2} f(y)g(x-y)\lambda^x
\]

\[
\hat{f}(\omega) = \sum_{x=0}^{n-1} f(x) \left(e^{-2\pi i \omega}\right)^x \quad \hat{g}(\omega) = \sum_{x=0}^{n-1} g(x) \left(e^{-2\pi i \omega}\right)^x
\]

\[
\hat{h}(\omega) = \hat{f}(\omega)\hat{g}(\omega)
\]
Discrete Fourier transform
Let ω_n be a primitive nth root of unity. That is, $\omega_n^n = 1$, but for all $i = 1, 2, \ldots, n - 1$, $\omega_n^i \neq 1$.

Remark If $m|n$, then $\omega_n^{n/m}$ is a primitive mth root of unity (why?).

Let

$$W(\omega_n) = W(1, \omega_n, \ldots, \omega_n^{n-1}).$$

That is,

$$W(\omega_n) = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & \omega_n & \cdots & \omega_n^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & \omega_n^{n-1} & \cdots & \omega_n^{(n-1)(n-1)}
\end{pmatrix}$$

The i, j entry of $W(\omega_n)$ is ω_n^{ij}. It is more convenient to count the entries from 0 to $n - 1$.
Example $n = 4$, $\omega_4 = i$. Then

$$\omega_4^{-1} = \omega_4^3 = -i = \bar{i}.$$

$$W(i) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

and

$$W^{-1}(i) = \frac{W(-i)}{4} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}$$

Proposition $W^{-1}(\omega_n) = \frac{1}{n} W(\omega_n^{-1})$.

11
Proof It suffices to show that $W(\omega_n)W(\omega_n^{-1}) = nI_n$. The i,j entry of $W(\omega_n)W(\omega_n^{-1})$ is

$$
\begin{pmatrix}
1, \omega_n^i, \ldots, \omega_n^{i(n-1)}
\end{pmatrix} \begin{pmatrix}
1 \\
\omega_n^{-j} \\
\vdots \\
\omega_n^{-j(n-1)}
\end{pmatrix} = \sum_{k=0}^{n-1} \omega_n^{ik} \omega_n^{-jk}
$$

$$
= \sum_{k=0}^{n-1} \left(\omega_n^{i-j} \right)^k.
$$

If $i = j$, then $\left(\omega_n^{i-j} \right)^k = 1$, implying $\sum_{k=0}^{n-1} \left(\omega_n^{i-j} \right)^k = n$. Otherwise, i.e., if $i \neq j$, $\omega_n^{i-j} \neq 1$, because ω_n is a primitive nth root of unity and $-n < i - j < n$. Therefore,

$$
\sum_{k=0}^{n-1} \left(\omega_n^{i-j} \right)^k = \frac{\left(\omega_n^{i-j} \right)^n - 1}{\omega_n^{i-j} - 1} = \frac{\left(\omega_n^n \right)^{i-j} - 1}{\omega_n^{i-j} - 1} = \frac{1 - 1}{\omega_n^{i-j} - 1} = 0.
$$

\[\square\]
Computing $W(\omega_n)\mathbf{x}^T$, where
\[\mathbf{x} = (x_0, x_1, \ldots, x_{n-1}) \] and
\[n = 2^k, \; k = 1, 2, \ldots \]
Denote ω_n just by ω. Then

$$W(\omega_n)x^T = (x(\omega^0), x(\omega^1), \ldots, x(\omega^{n-1}))^T,$$

where $x(\lambda) = \sum_{i=0}^{n-1} x_i \lambda^i$. That is, we have to compute $\{x(\omega^j)\}_{j=0,\ldots,n-1}$.

Let

$$x(\lambda) = \sum_{i=0}^{\frac{n}{2}-1} x_{2i} \lambda^{2i} + \lambda \sum_{i=0}^{\frac{n}{2}-1} x_{2i+1} \lambda^{2i} = x_0(\lambda^2) + \lambda x_1(\lambda^2).$$

Then

$$x(\omega^j) = x_0(\omega^{2j}) + \omega^j x_1(\omega^{2j}).$$

Note that

$$\left(\omega^{\frac{n}{2}+j}\right)^2 = \omega^{n+2j} = \omega^n\omega^{2j} = \omega^{2j}.$$

In addition, $\left(\omega^{\frac{n}{2}}\right)^2 = 1$. Therefore, $\omega^{\frac{n}{2}} = -1$ (why?), implying

$$x\left(\omega^{\frac{n}{2}+j}\right) = x_0(\omega^{2j}) - \omega^j x_1(\omega^{2j}), \quad j = 0, 1, \ldots, \frac{n}{2} - 1.$$

Finally, ω^2 is a primitive $\frac{n}{2}$th of unity.

14
Thus, we have

\[x(\omega^j) = x_0(\omega^{2j}) + \omega^j x_1(\omega^{2j}), \quad j = 0, 1, \ldots, \frac{n}{2} - 1 \]

\[x\left(\omega^\frac{n}{2} + j\right) = x_0(\omega^{2j}) - \omega^j x_1(\omega^{2j}), \quad j = 0, 1, \ldots, \frac{n}{2} - 1. \]

Let \(F(n) \) denote the number of operations (additions and multiplications by a constant) needed for computing the \(n \) point discrete Fourier transform by the above described algorithm. Then

\[F(n) = 2F\left(\frac{n}{2}\right) + \left(\frac{n}{2} - 1\right) + n \]

(what are \(n/2 - 1 \) and \(n \)?), implying

\[F(n) \leq \frac{3}{2} n \log_2 n. \]

The above algorithm is called Fast Fourier Transform – FFT.
Remark Over \mathbb{C}, ω_n can be recursively computed as follows.

$$\omega_{2n} = \frac{\omega_n + 1}{|\omega_n + 1|}$$
Finally, if the underlying domain contains a primitive 2^kth root of unity, we can compute the coefficients of the product of two degree-$(n - 1)$, $n = 2^{k-1}$, polynomials in $O(n \log n)$ operations, $2n - 1$ of which are multiplications and the rest are additions and multiplications by a constant.

\[
\begin{align*}
\mathbf{z}^T &= \frac{1}{2n} W\left(\omega_{2n}^{-1}\right) \left(W(\omega_{2n}) \left(\begin{array}{c}
x^T \\
0^T_n
\end{array}\right) \cdot W(\omega_{2n}) \left(\begin{array}{c}
y^T \\
0^T_n
\end{array}\right)\right)
\end{align*}
\]

First we compute

\[
W\left(\omega_{2n}^{-1}\right) \left(W(\omega_{2n}) \left(\begin{array}{c}
x^T \\
0^T_n
\end{array}\right) \cdot W(\omega_{2n}) \left(\begin{array}{c}
y^T \\
0^T_n
\end{array}\right)\right)
\]

and then divide each component z_k, $k = 0, 1, \ldots, 2n - 2$, of \mathbf{z} by $2n$ (which is the multiplication by the constant $1/2n$).
Example (Computing the “basic” symmetric functions of \(n\) variables).

The basic symmetric functions of \(x_0, x_1, \ldots, x_{n-1}\) are the coefficients of

\[
\mathbf{x} = \prod_{i=0}^{n-1} (\lambda + x_i)
\]

which can be computed as follows.

Let

\[
\mathbf{x}_{k,\ell} = \prod_{i=k}^{\ell-1} (\lambda + x_i).
\]

Then \(\mathbf{x} = \mathbf{x}_{0,n}\) and \(\mathbf{x}_{k,\ell} \mathbf{x}_{\ell,m} = \mathbf{x}_{k,m}\).

As always we assume that \(n\) is a power of 2. Then the computation of \(\mathbf{x}\) consists of \(k\) stages \((k = \log_2 n)\), from 1 to \(k\), where at stage \(\ell\) we compute all the products \(\mathbf{x}_{(j-1)2^\ell,j2^\ell}, \ j = 1, 2, \ldots, 2^\log_2 n - \ell\). Each product is computed from the products computed at the previous stage (or already existing at stage 0):

\[
\mathbf{x}_{(j-1)2^\ell,j2^\ell} = \mathbf{x}_{(2j-2)2^{\ell-1},(2j-1)2^{\ell-1}} \mathbf{x}_{(2j-1)2^{\ell-1},2j2^{\ell-1}}.
\]
\[x_{0,8} = x \]

\[x_{0,4} \]

\[x_{0,2}, x_{1,2}, x_{2,3}, x_{3,4} \]

\[\lambda + x_0, \lambda + x_1, \lambda + x_2, \lambda + x_3 \]

\[x_{4,6}, x_{4,8} \]

\[x_{4,5}, x_{5,6}, x_{6,7}, x_{6,8} \]

\[\lambda + x_4, \lambda + x_5, \lambda + x_6, \lambda + x_7 \]
Bookkeeping

- \(\deg \mathbf{x}_{(j-1)2^\ell, j2^\ell} = 2^\ell, \ l = 0, 1, \ldots, k-1 \) and \(j = 1, 2, \ldots, 2^{\log_2 n-\ell} \).

- Therefore, computing \(\mathbf{x}_{(j-1)2^\ell, j2^\ell} \) from \(\mathbf{x}_{(2j-2)2^{\ell-1}, (2j-1)2^{\ell-1}} \) and \(\mathbf{x}_{(2j-1)2^{\ell-1}, 2j2^{\ell-1}} \) can be performed in \(c2^\ell \log_2 2^\ell = c\ell2^\ell \) operations (what is the constant \(c \)), \(2^\ell - 1 \) of which are multiplications.

- Thus, the entire stage \(\ell, \ l = 1, 2, \ldots, k \) can be performed in \(c\ell2^\ell 2^{k-\ell} = c\ell n \) (why?) operations, \(2^k - 2^{k-\ell} = n - n/2^\ell \) of which are multiplications.

- Finally, the total number of operations is

\[
\sum_{\ell=1}^{\log_2 n-1} c\ell n = cn \frac{(\log_2 n - 1) \log_2 n}{2} = O(n \log^2 n),
\]

whereas the number of multiplications is

\[
\sum_{\ell=1}^{\log_2 n-1} (n - n/2^\ell) < n \log_2 n - n.
\]
Back to multiplication of integers
As usual, $n = 2^\ell$. Let $m = \lceil n/\ell \rceil$ and let

\[x = \sum_{i=0}^{m-1} x_i 2^{i\ell}, \quad y = \sum_{j=0}^{m-1} y_j 2^{j\ell}, \]

where $x_i, y_j < 2^\ell = n$, $i, j = 0, 1, \ldots, m - 1$. That is,

\[x_i = \sum_{t=0}^{\ell-1} a_i \ell + t 2^t, \quad y_j = \sum_{i=0}^{\ell-1} b_j \ell + t 2^t \]

Then

\[xy = \sum_{k=0}^{2m-2} \left(\sum_{i+j=k} x_i y_j \right) 2^{k\ell}. \]
Let
\[z_k = \sum_{i+j=k} x_i y_j, \quad k = 0, 1, \ldots, 2m - 2. \]

That is, \(z_k \) is the coefficient of \(\lambda^k \) in the polynomial product \(z(\lambda) = x(\lambda)y(\lambda) \), where
\[
\begin{align*}
x(\lambda) &= \sum_{i=0}^{m-1} x_i \lambda^i, \\
y(\lambda) &= \sum_{j=0}^{m-1} y_j \lambda^j.
\end{align*}
\]

Then the integer product \(xy \) can be computed from \(\{z_k\}_{k=0,1,\ldots,2m-2} \) in \(2m - 2 \) additions of shifted copies of \(z_k \)'s as depicted in the next slide.
These additions can be performed in $O(n)$ bit operations.
Now we apply the above multiplication algorithm (over \(\mathbb{C} \)) to \(x(\lambda) \) and \(y(\lambda) \), but truncate the roots of 1 at bit-\(t \) after the dot.

Let

\[
\tilde{z} = (\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_{2m-2})
\]

be the approximation of \(z \) obtained by the above algorithm. We shall prove that for \(t = 7 \log_2 n + 1 \),

\[
|\tilde{z}_i - z_i| < \frac{1}{2}, \quad i = 0, 1, \ldots, 2m - 2.
\]

Thus, we can recover \(z \) from \(\tilde{z} \).

We postpone for a moment the proof that the above \(t \) (what is it?) indeed provides the desired inequality (which one?) and compute the bit complexity of the “truncated” algorithm.
Algorithm 1 for integer multiplication

Substitute the truncated roots of 1 for their counterparts to compute the \(\tilde{z}_i \)s, \(i = 0, 1, \ldots, m - 1 \), by applying the same sequence of computational steps. The number of arithmetical operations is

\[
O(m \log m) = O((n / \log_2 n) \log(n / \log_2 n)) = O(n).
\]

Each arithmetical operation (addition/subtraction, multiplication by a truncated root of 1, and multiplication of the results of the approximate Fourier transforms) can be performed in \(O(\log^2 n) \) bit operations. Therefore the total number of bit operations is \(O(n \log^2 n) \) (including \(O(n) \) bit operations needed to compute \(xy \) from the \(z_i \)s, \(i = 0, 1, \ldots, m - 1 \)).

Remark Note that the \(\tilde{\omega}_{2^i} \), \(i = 1, 2, \ldots, \log_2 m + 1 \), can be precomputed in \(O(n \log^2 n) \) bit operations (how?).
Algorithm $i + 1$ for integer multiplication

As above, just use Algorithm i for integer multiplication. Then the total number of bit operations is

$$O(n \log n \log \log n \cdots \log \cdots \log n(\log \cdots \log n)^2).$$
Searching for t
We shall need the following notation.

- \(\varepsilon = 2^{-t} \).
- \(\tilde{\omega}_2^i \) and \(\tilde{\omega}_2^{-1}^i \) denote \(\omega_2^i \) and denote \(\omega_2^{-1}^i \) truncated at bit-\(t \), respectively, \(i = 1, 2, \ldots, \log_2 m + 1 \).

Thus, \(|\tilde{\omega}_2^i - \omega_2^i| \leq \varepsilon \) and \(|\tilde{\omega}_2^{-1}^i - \omega_2^{-1}^i| \leq \varepsilon \), \(i = 0, 1, \ldots, \log_2 m + 1 \).

- \(\hat{x}^T = (\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_{2m-2})^T = W(\omega_{2m-1})x^T \) and \(\tilde{x}^T = (\tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_{2m-2})^T \) is the result of the “truncated” transformation of \(x \).

- \(\hat{y}^T = (\hat{y}_0, \hat{y}_1, \ldots, \hat{y}_{2m-2})^T = W(\omega_{2m-1})y^T \) and \(\tilde{y}^T = (\tilde{y}_0, \tilde{y}_1, \ldots, \tilde{y}_{2m-2})^T \) is the result of the “truncated” transformation of \(y \).

- \(\hat{z} = (\hat{z}_0, \hat{z}_1, \ldots, \hat{z}_{2m-2}) = \hat{x} \cdot \hat{y} \) and \(\tilde{z} = (\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_{2m-2}) = \tilde{x} \cdot \tilde{y} \).

- \(\tilde{z} = (\tilde{z}_0, \tilde{z}_1, \ldots, \tilde{z}_{2m-2}) \) is the result of the “reversal truncated” transformation of \(\tilde{z} \).

Recall that we need an \(\varepsilon \) such that \(|\tilde{z}_i - z_i| < \frac{1}{2} \).
Lemma Let $f = \sum_{i=0}^{k-1} f_i \lambda^i$, $|f_i| \leq M$, $i = 0, 1, \ldots, k - 1$, $|\omega^i_2 - \omega^i_1| \leq \varepsilon$, $i = 1, 2, \ldots, \log_2 k$, and let $(f(\omega^0_2), f(\omega^1_2), \ldots, f(\omega^{k-1}_2))$ be the result of the “truncated” transformation of f. Then, for all $j = 0, 1, \ldots, k - 1$,

$$|f(\omega^j_2) - f(\omega^j_2)| \leq 4^k M \varepsilon.$$

\footnote{Note that $f(\omega^j_2)$ is not the value of f at ω^j_2 (why?), but is just a notation.}
Proof The proof is by induction on k. The basis $k = 1$ is immediate (why), and for the induction step, assume that the inequality holds for k. Then

$$\left| f \left(\omega_{2^{k+1}}^j \right) - f \left(\omega_{2^{k+1}}^j \right) \right|$$

$$\leq \left| f_0 \left(\omega_{2^k}^j \right) - f_0 \left(\omega_{2^k}^j \right) \right| + \left| \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) - \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) \right|$$

$$\leq 4^k M \varepsilon + \left| \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) - \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) \right| + \left| \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) - \omega_{2^k} f_1 \left(\omega_{2^k}^j \right) \right|$$

$$\leq 4^k M \varepsilon + (1 + \varepsilon)4^k M \varepsilon + 4^k M \varepsilon$$

$$\leq (4^k + 2 \cdot 4^k + 2^k) M \varepsilon$$

$$\leq 4^{k+1} M \varepsilon.$$
Next, by the lemma with f being x and y (in both cases, $k = \log_2 m + 1$),

\[
\begin{align*}
|\hat{x}_iy_i - \hat{x}_iy_i| & \leq |\hat{x}_iy_i - \hat{x}_iy_i| + |\hat{x}_iy_i - \hat{x}_iy_i| \\
& \leq |\hat{x}_i||\hat{y}_i - \hat{y}_i| + |\hat{y}_i||\hat{x}_i - \hat{x}_i| \\
& \leq (2mM + 4^{\log_2 m + 1} M\varepsilon) (4^{\log_2 m + 1} M\varepsilon) + (2mM) (4^{\log_2 m + 1} M\varepsilon) \\
& = (2mM + 4m^2 M\varepsilon) (4m^2 M\varepsilon) + (2mM) (4m^2 M\varepsilon) \\
& \leq 40m^4 M^2 \varepsilon.
\end{align*}
\]
Finally,

\[
|\tilde{z}_i - z_i| = |\tilde{z}(\omega_{2m}^i) - \hat{z}(\omega_{2m}^i)| \\
\leq |\tilde{z}(\omega_{2m}^i) - \tilde{z}(\omega_{2m}^i)| + |\tilde{z}(\omega_{2m}^i) - \hat{z}(\omega_{2m}^i)| \\
\leq \frac{1}{2m} 4m^2 \left(m (M^2 + 40m^4 M^2 \varepsilon) \right) \varepsilon + \frac{1}{2m} 2m \cdot 40m^4 M^2 \varepsilon \\
\leq 46m^4 M^2 \varepsilon \\
\leq \leq n^7 \varepsilon,
\]

because, in our case \(M = n \) (why?).

Therefore, \(\varepsilon \leq \frac{1}{2n^7} \) would suffice. That is, we may truncate at the \((\log_2 n + 1) \) bit.