Scan Conversion:

Drawing Lines on Raster Display
Raster Display

- Discrete grid of elements (frame buffers pixels)
- Shapes drawn by setting the “right” elements
- Frame buffer is scanned, one line at a time, to refresh the image (as opposed to vector display)

Properties
- Difficult to draw smooth lines
- Displays only a discrete approximation of any shape
- Refresh of entire frame buffer
Terminology

- **Pixel**: Picture element
 - Smallest accessible element in picture
 - Usually rectangular or circular

- **Aspect Ratio**: Ratio between physical dimensions of pixel
 - (not necessarily 1 !!)

- **Dynamic Range**: Ratio between minimal (not zero!) and maximal light intensity emitted by displayed pixel
Terminology (cont’d)

- **Resolution**: number of distinguishable rows and columns on device Measured in
 - Absolute values (1K x 1K)
 - Relative values (300 dots per inch)

- **Screen Space**: discrete 2D Cartesian coordinate system of screen pixels

- **Object Space**: 3D Cartesian coordinate system of the universe where the objects (to be displayed) are embedded
Basic Line Drawing

Assume $x_1 < x_2$ and line slope absolute value is ≤ 1

```python
Line (x_1, y_1, x_2, y_2)
begin
    float dx, dy, x, y, slope;
    dx < x_2 - x_1;
    dy < y_2 - y_1;
    slope < dy / dx;
    y < y_1;
    for x from x_1 to x_2 do
        begin
            PlotPixel (x, Round (y));
            y < y + slope;
        end;
end;
```

Questions:

Can this algorithm use integer arithmetic?

Does it accumulate error?

Is the error significant?
Recursive Line Drawing

Simple, recursive, integer, line drawing:

```plaintext
name (x1, y1, x2, y2)
begin
  int x, y;
  x < - (x1 + x2) / 2;
  y < - (y1 + y2) / 2;
  if ((x < x1 and y < y1) or
      (x < x2 and y < y2))
    return;
  else begin
    PlotPixel (x, y);
    line (x1, y1, x, y);
    line (x, y, x2, y2);
  end;
end;
```

Questions:

How does the algorithm work?

Does the algorithm accumulate error?

Is it significant?
Recursive Line Drawing (cont’d)

More Potential Problems:
- Line is not drawn sequentially
- Function call for each pixel drawn

We want a faster and accurate algorithm!
Midpoint (Bresenham) Algorithm

- Assumptions:
 \[x_2 > x_1, \quad y_2 > y_1 \quad \text{and} \quad \frac{dy}{dx} = \frac{y_2 - y_1}{x_2 - x_1} < 1 \]

- Idea:
 - Define error function
 - Proceed along the line incrementally
 - Select direction that minimizes accumulated error

Definitions
\[\mathcal{P} = \{(x, y) \mid ax + by + c = xdy + ydx + c = 0 \} \]
\[d(x, y) = 2(xdy + ydx + c) \]
Midpoint (Bresenham) Algorithm (cont’d)

- Given point \(P=(x,y), \ d(x,y) \) is the signed distance of \(P \) to \(\tau \) (up to normalization factor)

- \(d \) is zero for \(P \in \tau \)
 \[\Rightarrow d \text{ may serve as error function to be minimized} \]

- Starting point satisfies \(d(x_1,y_1) = 0 \)

- Each step moves right (east) or upper right (northeast)
Midpoint Line Drawing (cont’d)

- Sign of \(d(x_1+1,y_1+\frac{1}{2}) \) indicates whether to move east or northeast

- At \((x_1,y_1)\)

 \[d_{\text{start}} = d(x_1+1,y_1+\frac{1}{2}) = 2dy-dx \]

- Increment in \(d \) (after each step)
 - Move east
 \[\Delta_e = d(x+2,y+\frac{1}{2}) - d(x+1,y+\frac{1}{2}) = \]
 \[= 2((x+2)dy-(y+\frac{1}{2})dx+c)) - 2((x+1)dy-(y+\frac{1}{2})dx+c) \]
 \[= 2dy \]
 - Move northeast
 \[\Delta_{ne} = d(x+2,y+3/2) - d(x+1,y+\frac{1}{2}) = \]
 \[= 2((x+2)dy-(y+3/2)dx+c)) - 2((x+1)dy-(y+\frac{1}{2})dx+c) \]
 \[= 2(dy-dx) \]
Midpoint Line Algorithm

```plaintext
algorithm Line (x₀, y₀, x₁, y₁)
begin
    int x₀, y₀, dx, dy, d, Lₓ, Lᵧ; 
x < x₀; y < y₀;
dx < x₁ - x₀; dy < y₁ - y₀;
d < 2 * dy * dx;
Lₓ < 2 * dy; Lᵧ < 2 * (dy * dx);
fillPixelCell (x, y);
while (x < x₁) do
    if (d < 0) then
        begin
        d < d + Lₓ;
x < x + 1;
        end;
    else begin
        d < d + Lᵧ;
x < x + 1;
y < y + 1;
        end;
fillPixelCell (x, y);
end;
```
Midpoint Examples

Question: Is there a problem with the MidPoint algorithm (hint: horizontal vs. diagonal lines)?

Comment: Algorithm extends to higher order curves – e.g. circles
Error Function Intuition

- Error function d can be viewed as *explicit surface*:
 \[d(x,y) = 2(xdy - ydx + c) \]

- Implicit equation of origin-centered circle C is
 \[x^2 + y^2 - R^2 = 0 \]

- Error functional
 \[d(x,y) = x^2 + y^2 - R^2 \]
 vanishes on C

- Can also be seen as an *explicit surface*
Circle Midpoint

- For first quadrant, start from \((x_1, y_1) = (0, R)\)
- Move \textit{east} or \textit{south-east}
- \(d(x,y)\) will be a threshold criteria at the midpoint

- Because of symmetry - suffices to deal with octant of first quadrant for which \(y>x\)
Circle Midpoint (cont’d)

- At the beginning: \(d_{\text{start}} = d(x_1 + 1, y_1 - \frac{1}{2}) = d(1, R - \frac{1}{2}) = 5/4 - R \)
- Moving east:
 \[\Delta_e = d(x+2, y-\frac{1}{2}) - d(x+1, y-\frac{1}{2}) \]
 \[= (x+2)^2 + (y-\frac{1}{2})^2 - R^2 - (x+1)^2 - (y-\frac{1}{2})^2 + R^2 \]
 \[= 2x + 3 \]
- Moving south-east:
 \[\Delta_{se} = d(x+2, y-\frac{3}{2}) - d(x+1, y-\frac{1}{2}) \]
 \[= (x+2)^2 + (y-\frac{3}{2})^2 - R^2 - (x+1)^2 - (y-\frac{1}{2})^2 + R^2 \]
 \[= 2(x-y) + 5 \]
- \(\Delta_e \) and \(\Delta_{se} \) not constant anymore
- Since \(d \) is incremented by integer values, one can use \(d_{\text{start}} = 1 - R \), yielding an **integer algorithm**
- This last change has no effect on threshold criteria
Midpoint Circle Algorithm

```
begin
int x, y, d;
x < 0;
y < N;
d < 1 - N;
PutPixel(x, y);
while (y > x) do
  if (d < 0) then
    d := d + 2 * x + 3;
x := x + 1;
cd.
  else begin
    d := d + 2 * (x - y) + 3;
x := x + 1;
y := y - 1;
cd.
end;
end;
```
Circle Midpoint Examples

Full Circles

One Quadrant